
講義メモ
テキスト編： 「 構造体を使ってみる」からp.288 DateTime
ゲーム開発演習：画面遷移、タイマー処理、背景画面スクロール

構造体を使ってみるp.288 DateTime

・ 構造体： が提供する機能で、構造体として利用可能DateTime C#
・ などにおける日付時刻機能に近いが、最も洗練されていて使いやすいC/C++/Java
・年月日時分秒ミリ秒を返す 型プロパティ：int

、 、 、 、 、 、 。Year Month Day Hour Minute Second Millsecond
・曜日を 列挙型で返す プロパティもあるDayOfWeek DayOfWeek
　これは日曜日を とする英語曜日名の列挙子でできており、表示すると英語曜日名になる0
・１年の通算日（ 月 日を 日目とする日数）を 型で返すのが プロパティ1 1 1 int DayOfYear
・現在日付時刻を持つ 構造体オブジェクトを返すのが 静的プロパティDateTime Now
　利用例： ；DateTime dt = DateTime.Now
・ 構造体オブジェクトに含まれる年月日のみを（時分秒をゼロにした値）を 構造DateTime DateTime
体型で得るのが プロパティDate
・この 構造体オブジェクトを表示すると「 」形式となる。DateTime YYYY/MM/DD 0:00:00
・なお、 メソッドに渡すと「 」形式となる。ToShortDateString() YYYY/MM/DD
・ 構造体には多数のコンストラクタがあるが、年月日のみを指定するDateTime DateTime(int,

や、年月日時分秒を指定する がint, int) DateTime(int, int, int, int, int, int)
便利。

p.290 datetime01.cs

//p.290 datetime01.cs
using System;
class datetime01 {
 public static void Main() {

現在時刻を得る DateTime dt = DateTime.Now; //
今日は 年 月 日 です Console.WriteLine(" {0} {1} {2} ({3}) ",

プロパティを利用 dt.Year, dt.Month, dt.Day, dt.DayOfWeek //
);

現在 時 分 秒 ミリセコンドです Console.WriteLine(" {0} {1} {2} {3} ",
プロパティを利 dt.Hour, dt.Minute, dt.Second, dt.Millisecond); //

用
 Console.WriteLine("dt.Date = {0}", dt.Date); //YYYY/MM/DD 0:00:00
形式で表示

短い日付形式 Console.WriteLine(" = {0}", dt.ToShortDateString());
形式で表示//YYYY/MM/DD 0:00:00

 }
}

アレンジ演習：p.290 datetime01.cs

・曜日を日本語の曜日文字にしよう
・ヒント
　・曜日名の配列を用いると良い 日 月 火 水 木 金 土 string[] dow = {" "," "," "," "," "," ","
"};

　・ 構造体型から 型にキャストすると、日曜日から何日目かを示す整数になるDayOfWeek int
　・よってこれを 配列の添字にすると、日本語の曜日文字が得られるdow

作成例

アレンジ演習：// p.290 datetime01.cs
using System;
class datetime01 {
 public static void Main() {

日 月 火 水 木 金 土 【追 string[] dow = { " ", " ", " ", " ", " ", " ", " " }; //
加】

現在時刻を得る DateTime dt = DateTime.Now; //
今日は 年 月 日 です Console.WriteLine(" {0} {1} {2} ({3}) ",

【変更】プロ dt.Year, dt.Month, dt.Day, dow[(int)dt.DayOfWeek] //
パティを利用
);

現在 時 分 秒 ミリセコンドです Console.WriteLine(" {0} {1} {2} {3} ",
プロパティを利 dt.Hour, dt.Minute, dt.Second, dt.Millisecond); //

用
 Console.WriteLine("dt.Date = {0}", dt.Date); //YYYY/MM/DD 0:00:00
形式で表示

短い日付形式 Console.WriteLine(" = {0}", dt.ToShortDateString());
形式で表示//YYYY/MM/DD 0:00:00

 }
}

アレンジ演習： 続きp.290 datetime01.cs

・コンソールから年、月、日を入力すると、曜日を表示する機能を追加しよう
・ヒント：年、月、日を 構造体の、 コンストラクタに渡して、日DateTime DateTime(int,int,int)
付時刻オブジェクトを生成させて、用いると良い

作成例

アレンジ演習：// p.290 datetime01.cs
using System;
class datetime01 {
 public static void Main() {

日 月 火 水 木 金 土 【追 string[] dow = { " ", " ", " ", " ", " ", " ", " " }; //
加】

現在時刻を得る DateTime dt = DateTime.Now; //
今日は 年 月 日 です Console.WriteLine(" {0} {1} {2} ({3}) ",

【変更】プロ dt.Year, dt.Month, dt.Day, dow[(int)dt.DayOfWeek] //
パティを利用
);

現在 時 分 秒 ミリセコンドです Console.WriteLine(" {0} {1} {2} {3} ",
プロパティを利 dt.Hour, dt.Minute, dt.Second, dt.Millisecond); //

用
 Console.WriteLine("dt.Date = {0}", dt.Date); //YYYY/MM/DD 0:00:00

形式で表示
短い日付形式 Console.WriteLine(" = {0}", dt.ToShortDateString());

形式で表示//YYYY/MM/DD 0:00:00
年： 【 Console.Write(" "); int y = int.Parse(Console.ReadLine()); //

以下追加】
月： Console.Write(" "); int m = int.Parse(Console.ReadLine());
日： Console.Write(" "); int d = int.Parse(Console.ReadLine());

 Console.WriteLine(dow[(int)(new DateTime(y, m, d)).DayOfWeek] + "
曜");
 }
}

（ クラスの静的プロパティとメソッド）p.291 Console

・ クラスの静的プロパティを用いると、表示コンソールのタイトル、文字色＆背景色、カーソルConsole
の有無などを操作できる。また、キー状態を得ることもできる。
　・ ： にするとカーソルを表示、 にすると非表示（動きのあるアプリbool CursorVisible true false
ケーション向き）
　・ ：タイトル文字列を設定string Title
　・ ：背景色を 列挙子で設定ConsoleColor BackgroundColor ConsoleColor
　・ ：文字色を 列挙子で設定ConsoleColor ForegroundColor ConsoleColor
　・ ：キーが押されていたら を、でなければ を返すbool KeyAvailable true false
・ クラスの静的メソッドを用いると、表示コンソールの大きさの変更、カーソルの移動やクリア動Console
作などを実行できる
　・ 横幅文字数 高さ文字数 ：表示コンソールの大きさを変更void SetWindowSize(,)
　・ 横位置 縦位置 ：カーソルの位置を変更void SetCursorPosition(,)
　・ ：コンソールを再描画し変更を反映するvoid Clear()

p.291 clock01.cs

//p.291 clock01.cs
using System;
class clock01 {
 public static void Main() {

秒を比較用に保持する変数 int oldsecond = 0; //
カーソルを非表示に Console.CursorVisible = false; //

時計 コンソールタイトル設定 Console.Title = " "; //
コンソールの大きさ設定 Console.SetWindowSize(12, 3); //

背景色 Console.BackgroundColor = ConsoleColor.Yellow; //
文字色 Console.ForegroundColor = ConsoleColor.Black; //

変更を反映 Console.Clear(); //
日付時刻オブジェクト用 DateTime mt; //
無限ループ while (true) { //

現在日付時刻を得る mt = DateTime.Now; //
秒が変わっていない？ if (mt.Second == oldsecond) { //

後続処理をスキップして次へ continue; //
秒が変わっている？ } else { //

新しい秒を取っておく oldsecond = mt.Second; //
 }

カーソルを前へ移動 Console.SetCursorPosition(2, 1); //
 Console.Write("{0:00}:{1:00}:{2:00}",

時分秒を各 桁で表示 mt.Hour, mt.Minute, mt.Second); // 2
何かキーが押された？ if (Console.KeyAvailable) { // }

繰返しを抜ける break; //
 }
 }
 }
}

テキスト編次回予告：「アレンジ演習： 」からp.291 clock01.cs

ゲーム開発演習：画面遷移、タイマー処理、背景画面スクロール

提出フォロー：演習 タイトル画面17

・クラス変数 を で初期化する（ タイトル画面、 プレイ画面、 終了画面）gamemode 0 0: 1: 9:
・ が であれば、背景画像、タイトル、メッセージ「 」を表示gamemode 0 Hit Enter to Start
・ が であれば、背景画像、アイテム、矩形を表示gamemode 1
・まず、タイトル画面を表示するところまで作成しよう
　例：ゲーム名「 」フォント メイリオ サイズGAME1 " ", 80,Bold,Yellow,X=100,Y=150
　例：メッセージ「 」フォント メイリオ サイズHit Enter Key " ", 25,Bold,Yellow,X=200,Y=300

作成例

演習 タイトル画面// 17
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

【追加】モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //

アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //
赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2

透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //
赤いブラシ

メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ 【追加】フォントを生 Font fontt = new Font(" ", 80, FontStyle.Bold); //

成
メイリオ 【追加】フォントを生 Font fontm = new Font(" ", 25, FontStyle.Bold); //

成
黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //

描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //
イド

基本クラスの描画処理を呼ぶ base.OnPaint(e); //
背景画像を描画 e.Graphics.DrawImage(backi, 0, 0); //

【以下追加】スタート画面？ if (gamemode == 0) { //
タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //

イトル表示

 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,
メッセージ表示300); //

【追加】プレイ画面？ } else if (gamemode == 1) { //
 e.Graphics.DrawString("SCORE:000,000", font1, brushs, 400,

スコア表示10); //
中心座標を得 int x = backi.Width / 2, y = backi.Height / 2; //

る
 e.Graphics.DrawImage(numx, x - numx.Width / 2, y -

アイテム画像を描画numx.Height / 2); //
矩形を e.Graphics.FillRectangle(brush1, 78, 411, 485, 64); //

塗りつぶす
矩形を描く e.Graphics.DrawRectangle(pen1, 78, 411, 485, 64); //

ペンを黄色にする pen1.Color = Color.Yellow; //
ペン太さを にする pen1.Width = 10; // 10

回繰返す for (int i = 1; i <= 4; i++) { //4
 e.Graphics.DrawEllipse(pen1, x - 15 * i, y - 15 * i, 30 *

円を描くi, 30 * i); //
 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }
 }

コンストラクタ Program() { //
キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //

 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //
コントロールボックスを非表示に f.ControlBox = false; //

サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //
フォームを現出 Application.Run(f); //

 }
}

テーマ 画面再描画（再掲載）21

・プログラム側で起動後に において画面の描画を変えた場合、そのままでは実画面には反onPaint
映しない
・これには、システムに対する画面再描画の依頼が必要で、 クラスのWindows.Forms.Control

メソッドを呼べば良いInvalidate()
・なお、 メソッドのプログラム側からの呼び出しは出来ず、システムに対する画面再描画の依onPaint
頼により、システムから呼ぶ必要がある

演習 画面遷移18

・ が の時に、 キーが押されたら を にすることでタイトル画面からプレイ画gamemode 0 Enter gamemode 1
面への画面遷移をしよう
・ キーの はEnter KeyCode "Return"
・ メソッドを呼んで画面再描画を依頼しようInvalidate()

作成例

演習 画面遷移// 18
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //

アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //
赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2

透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //
赤いブラシ

メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //

イド
基本クラスの描画処理を呼ぶ base.OnPaint(e); //

背景画像を描画 e.Graphics.DrawImage(backi, 0, 0); //
スタート画面？ if (gamemode == 0) { //

タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //
イトル表示
 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,

メッセージ表示300); //
プレイ画面？ } else if (gamemode == 1) { //

 e.Graphics.DrawString("SCORE:000,000", font1, brushs, 400,
スコア表示10); //

中心座標を得 int x = backi.Width / 2, y = backi.Height / 2; //
る
 e.Graphics.DrawImage(numx, x - numx.Width / 2, y -

アイテム画像を描画numx.Height / 2); //
矩形を e.Graphics.FillRectangle(brush1, 78, 411, 485, 64); //

塗りつぶす
矩形を描く e.Graphics.DrawRectangle(pen1, 78, 411, 485, 64); //

ペンを黄色にする pen1.Color = Color.Yellow; //
ペン太さを にする pen1.Width = 10; // 10

回繰返す for (int i = 1; i <= 4; i++) { //4
 e.Graphics.DrawEllipse(pen1, x - 15 * i, y - 15 * i, 30 *

円を描くi, 30 * i); //
 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

【以下追加】タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
 }

【追加】画面再描画を依頼 Invalidate(); //
 }

コンストラクタ Program() { //
キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //

 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //
コントロールボックスを非表示に f.ControlBox = false; //

サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //
フォームを現出 Application.Run(f); //

 }
}

テーマ タイマー処理22

・画面を自動的に変更したり、一定時間おきに何かを行いたい場合、タイマーを用いることができる
・タイマーは、 クラスのデフォルトコンストラクタで生成できるSystem.Windows.Forms.Timer
例： Timer timer = new Timer();
・このインスタンスの持つ イベント（ 章で説明）に、 メソッドと同様に、タイマーに呼びTick 13 OnKeyDown
出して欲しいメソッドを登録する。
・登録には メソッド名 を「 」するEventHandler() +=
例： タイマーに呼び出して欲しいメソッド名 timer.Tick += new EventHandler();
・そして、インスタンスプロパティ に、動作間隔をミリ秒で指定するInterval
例： timer.Interval = 20;
・最後に、インスタンスメソッド を呼ぶことでタイマーが動作するStart()
・タイマーに呼び出して欲しいメソッドの引数は「 」戻り値型は とすることobject, EventArgs void

テーマ 数値の形式指定文字列化23

・ クラスの静的メソッド に、書式指定文字列と数字を渡して書式指定結果の文字列String Format
を得ることができる
・書式： 結果文字列 書式指定文字列 値 string = String.Format(" ", , …);
・例：
　 はstring str = String.Format("x = {0}, y = {1]", 10, 20); //str "x = 10,

となるy = 20"

演習 タイマーによるスコアアップ19

・スコア用の 型インスタンス変数 を で初期化しておくint score 0

・スコア表示を個の変数の値を表示するように変更する
例： string str = String.Format("SCORE:{0:000,000}", score);
・タイマーから呼び出されるメソッド で、 をカウントアップするplay score
・なお、スコアを書き換えたら、画面再描画を依頼すること
・タイマーのインターバルは ミリ秒程度にすると良い500
・画面のちらつきは次の演習で対処する

作成例

演習 タイマーによるスコアアップ// 19
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
【追加】スコア int score = 0; //

背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //
アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //

赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2
透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //

赤いブラシ
メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
【追加】タイマーの生成 Timer timer = new Timer(); //

描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //
イド

基本クラスの描画処理を呼ぶ base.OnPaint(e); //
背景画像を描画 e.Graphics.DrawImage(backi, 0, 0); //

スタート画面？ if (gamemode == 0) { //
タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //

イトル表示
 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,

メッセージ表示300); //
プレイ画面？ } else if (gamemode == 1) { //

【追 string s = String.Format("SCORE:{0:000,000}", score); //
加】スコア文字列を作る

【変更】スコ e.Graphics.DrawString(s, font1, brushs, 400, 10); //
ア表示

中心座標を得 int x = backi.Width / 2, y = backi.Height / 2; //
る
 e.Graphics.DrawImage(numx, x - numx.Width / 2, y -

アイテム画像を描画numx.Height / 2); //
矩形を e.Graphics.FillRectangle(brush1, 78, 411, 485, 64); //

塗りつぶす
矩形を描く e.Graphics.DrawRectangle(pen1, 78, 411, 485, 64); //

ペンを黄色にする pen1.Color = Color.Yellow; //
ペン太さを にする pen1.Width = 10; // 10

回繰返す for (int i = 1; i <= 4; i++) { //4
 e.Graphics.DrawEllipse(pen1, x - 15 * i, y - 15 * i, 30 *

円を描くi, 30 * i); //
 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
【追加】タイマー開始 timer.Start(); //

 }
画面再描画を依頼 Invalidate(); //

 }
【以下追加】タイマーイベント処理 void Play(object o, EventArgs e) { //

スコアカウントアップ score++; //
画面再描画を依頼 Invalidate(); //

 }
コンストラクタ Program() { //

キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //
【追加】タイマーイベント登録 timer.Tick += new EventHandler(Play); //

【追加】タイマーインターバルを ミリ秒に timer.Interval = 500; // 500
 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //
コントロールボックスを非表示に f.ControlBox = false; //

サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //
フォームを現出 Application.Run(f); //

 }
}

テーマ ダブルバッファリング24

・画面の動きがあるアプリケーションでは、画面の書き換えタイミングのずれによるチラつきが起こる
・これを防ぐには 画像メモリ またはそれに対応するメモリを２重化し、描画し終えた画面を表示VRAM()
画面に高速一括転送すると良い
・これをダブルバッファリングという
・ の では、プロパティの設定のみでダブルバッファリングを有効化できるC# GDI+
・しかも、 フレームワーク 以降では クラスの プロ.NET 4.8 System.Windows.Forms DoubleBuffered
パティを にするのみで になっているtrue OK
・なお、これ以前の フレームワークを用いる場合は下記を実行すると良い：.NET
 SetStyle(ControlStyles.DoubleBuffer |
 ControlStyles.UserPaint |
 ControlStyles.AllPaintingInWmPaint, true);

演習 ダブルバッファリング20

・コンストラクタでダブルバッファリングを有効化してチラつきがないことを確認しよう

作成例

演習 ダブルバッファリング// 20
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
スコア int score = 0; //

背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //
アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //

赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2
透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //

赤いブラシ
メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
タイマーの生成 Timer timer = new Timer(); //

描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //
イド

基本クラスの描画処理を呼ぶ base.OnPaint(e); //
背景画像を描画 e.Graphics.DrawImage(backi, 0, 0); //

スタート画面？ if (gamemode == 0) { //
タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //

イトル表示
 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,

メッセージ表示300); //
プレイ画面？ } else if (gamemode == 1) { //

スコア string s = String.Format("SCORE:{0:000,000}", score); //
文字列を作る

スコア表示 e.Graphics.DrawString(s, font1, brushs, 400, 10); //
中心座標を得 int x = backi.Width / 2, y = backi.Height / 2; //

る
 e.Graphics.DrawImage(numx, x - numx.Width / 2, y -

アイテム画像を描画numx.Height / 2); //
矩形を e.Graphics.FillRectangle(brush1, 78, 411, 485, 64); //

塗りつぶす
矩形を描く e.Graphics.DrawRectangle(pen1, 78, 411, 485, 64); //

ペンを黄色にする pen1.Color = Color.Yellow; //
ペン太さを にする pen1.Width = 10; // 10

回繰返す for (int i = 1; i <= 4; i++) { //4
 e.Graphics.DrawEllipse(pen1, x - 15 * i, y - 15 * i, 30 *

円を描くi, 30 * i); //

 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
タイマー開始 timer.Start(); //

 }
画面再描画を依頼 Invalidate(); //

 }
タイマーイベント処理 void Play(object o, EventArgs e) { //

スコアカウントアップ score++; //
画面再描画を依頼 Invalidate(); //

 }
コンストラクタ Program() { //

【追加】ダブルバッファリングを有効化 DoubleBuffered = true; //
キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //

タイマーイベント登録 timer.Tick += new EventHandler(Play); //
タイマーインターバルを ミリ秒に timer.Interval = 500; // 500

 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //
コントロールボックスを非表示に f.ControlBox = false; //

サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //
フォームを現出 Application.Run(f); //

 }
}

テーマ 背景画面のスクロール25

・ の座標系では画面に表示されない範囲外の座標を指定しても良いGDI+
・そのため、画像や図形の描画開始位置を範囲外にして、範囲内にある部分のみを表示してOK
・この仕組みを活用して背景画面のスクロールをすることができる
・以下は縦スクロールの場合だが、横スクロール
・背景画像を 枚用意し、 枚目の描画開始位置を画面左上 から順次上に変更していく2 1 (0,0)
・すると、 枚目が見かけ上に移動して、下が開くので、そこから 枚目を描画すればよい1 2
・そして完全に上がり切ったら、元の に戻せば良い(0,0)

提出：演習 ダブルバッファリング20

ゲーム開発演習次回予告：背景画面のスクロール、アイテムの同時スクロール、左右移動 など

