
講義メモ
テキスト編：「アレンジ演習： 」からp.291 clock01.cs
ゲーム開発演習：背景画面のスクロール、アイテムの同時スクロール、左右移動 など

アレンジ演習：p.291 clock01.cs

・ストップウォッチにしよう
・実行すると「 」を表示してカウントを開始するようにしよう00:00:00
・そのために、現在時刻ではなく、時刻を表す 万分の１秒刻みのカウンタを 構造体の1000 DateTime

プロパティ 型 で得て用いるTicks (long)
・起動時に現在時刻を持つオブジェクトを得たら を確保しておき、最新の との差を算出Ticks Ticks
する
・この差を 万倍すると秒になるので、 で割って時間を、 で割った結果の の剰余で分を、1000 3600 60 60
の剰余で秒を得ると良い60

作成例

アレンジ演習：// p.291 clock01.cs
using System;
class clock01 {
 public static void Main() {

秒を比較用に保持する変数 int oldsecond = 0; //
カーソルを非表示に Console.CursorVisible = false; //

時計 コンソールタイトル設定 Console.Title = " "; //
コンソールの大きさ設定 Console.SetWindowSize(12, 3); //

背景色 Console.BackgroundColor = ConsoleColor.Yellow; //
文字色 Console.ForegroundColor = ConsoleColor.Black; //

変更を反映 Console.Clear(); //
【追加】開始時の日付時刻オブジェクト DateTime st = DateTime.Now; //

日付時刻オブジェクト用 DateTime mt; //
無限ループ while (true) { //

現在日付時刻を得る mt = DateTime.Now; //
【追加】経 int lap = (int)((mt.Ticks - st.Ticks) / 10000000); //

過秒数を得る
【追加】時間を得る int Hour = lap / 3600; //

【追加】分を得る int Minute = lap / 60 % 60; //
【追加】秒を得る int Second = lap % 60; //

【変更】秒が変わっていない？ if (Second == oldsecond) { //
後続処理をスキップして次へ continue; //

秒が変わっている？ } else { //
【変更】新しい秒を取っておく oldsecond = Second; //

 }
カーソルを前へ移動 Console.SetCursorPosition(2, 1); //

 Console.Write("{0:00}:{1:00}:{2:00}",
【変更】時分秒を各 桁で表示 Hour, Minute, Second); // 2
何かキーが押された？ if (Console.KeyAvailable) { // }

繰返しを抜ける break; //
 }
 }

 }
}

アレンジ演習： ・続きp.291 clock01.cs

・ミリ秒までのストップウォッチにしよう
・実行すると「 」を表示してカウントを開始するようにしよう（表示幅を 文字分増やす）00:00:00.000 4
・最新の との差を 万倍するとミリ秒になるので、 で割って時間を、 で割った結Ticks 1 3600000 60000
果の の剰余で分を、 で割った結果の の剰余で秒を、 の剰余でミリ秒を得ると良い60 1000 60 1000

作成例

アレンジ演習：// p.291 clock01.cs
using System;
class clock01 {
 public static void Main() {

【変更】ミリ秒を比較用に保持する変数 int oldmsecond = 0; //
カーソルを非表示に Console.CursorVisible = false; //

時計 コンソールタイトル設定 Console.Title = " "; //
【変更】コンソールの大きさ設定 Console.SetWindowSize(16, 3); //

背景色 Console.BackgroundColor = ConsoleColor.Yellow; //
文字色 Console.ForegroundColor = ConsoleColor.Black; //

変更を反映 Console.Clear(); //
開始時の日付時刻オブジェクト DateTime st = DateTime.Now; //

日付時刻オブジェクト用 DateTime mt; //
無限ループ while (true) { //

現在日付時刻を得る mt = DateTime.Now; //
【変更】経過 int lap = (int)((mt.Ticks - st.Ticks) / 10000); //

秒数を得る
【変更】時間を得る int Hour = lap / 3600000; //

【変更】分を得る int Minute = lap / 60000 % 60; //
【変更】秒を得る int Second = lap / 1000 % 60; //

【追加】ミリ秒を得る int MSecond = lap % 1000; //
【変更】ミリ秒が変わっていない？ if (MSecond == oldmsecond) { //

後続処理をスキップして次へ continue; //
秒が変わっている？ } else { //

【変更】新しいミリ秒を取っておく oldmsecond = MSecond; //
 }

カーソルを前へ移動 Console.SetCursorPosition(2, 1); //
 Console.Write("{0:00}:{1:00}:{2:00}.{3:000}",

【変更】時分秒を各 桁で表示 Hour, Minute, Second, MSecond); // 2
何かキーが押された？ if (Console.KeyAvailable) { // }

繰返しを抜ける break; //
 }
 }
 }
}

練習問題 ヒントp.294

・プロパティによる制限なので、エラー表示は含まなくて良い
・偶数は正の整数なので、構造体に含まれるメンバの型は にすると良いuint
・偶数しか保持できないようにするには、データメンバへの直接アクセスを禁止するしかない
・よって、データメンバは としようprivate
・そして、このデータメンバを扱うプロパティは とするpublic
・プロパティの において、 をチェックし、偶数であれば代入するset value
・プロパティの は通常通りget

作成例

練習問題//p.294
using System;

構造体定義struct MyStruct { //
構造体のデータメンバ private uint x; //
プロパティ public uint X { //

 get { return x; }
 set { if (value % 2 == 0) { x = value; } }
 }
}
class struct01 {
 public static void Main() {

が必要 MyStruct ms = new MyStruct(); //new
構造体のプロパティで代入 ms.X = 10; //

構造体のプロパティを呼ぶ Console.WriteLine(ms.X); //
構造体のプロパティで代入 できない ms.X = 11; // ()

構造体のプロパティを呼ぶ Console.WriteLine(ms.X); //
 }
}

第 章 デリゲートとイベント12

デリゲートとはp.295

・メソッドへの参照を保持しておいて、これを用いてメソッドを呼び出せる仕掛け
・ における「関数へのポインタ」の考え方を洗練したものC/C++
・ 公式リファレンスでは「代理人」と和訳されていることがあるが、ニュアンスが異なるC#
・主に、イベントなどで用いる
・利用には宣言と生成が必要で、宣言はクラスの外で行う
・宣言書式： メソッドの戻り値型 デリゲート名 メソッドの引数リスト delegate ();
・この書式でわかる通り、デリゲートで用いたいメソッドと、戻り値型、引数リストが一致している必要が
ある
・例： このデリゲートで「 」などが扱える delegate bool md(int w); // bool foo(int x){…}
・デリゲートの生成において、扱うメソッド名を指定する
・生成書式： デリゲート名 参照変数 デリゲート名 メソッド名 = new ();
・例： メソッドを呼び出せるデリゲートを生成し とする md work = new md(foo); //foo work
・デリゲート経由でメソッドを呼び出すには、参照変数をメソッドの別名にように扱える
・例： と同じ動作になる bool ans = work(12); // bool ans = foo(12);

p.297 delegate01.cs

//p.297 delegate01.cs
using System;

デリゲートの宣言 戻り値無、引数無delegate void MyDelegate(); // ())
class delegate01 {

静的メソッド から呼出可 public static void show() { // (Main)
呼ばれました Console.WriteLine(" ");

 }
 public static void Main() {

直接 メソッドを呼び出す // show
 show();

デリゲートの作成 //
 MyDelegate md = new MyDelegate(show);

デリゲートを通して メソッドを実行 // show
 md();
 }
}

（別のクラスにあるインスタンスメソッドをデリゲート経由で呼び出す）p.298

・別のクラスにあるインスタンスメソッドをデリゲート経由で呼び出すことができる
・そのクラスのインスタンスを生成して用いると良い
・生成書式： デリゲート名 参照変数 デリゲート名 インスタンス名 メソッド名 = new (.);

作成例

//p.298 delegate02.cs
using System;

デリゲートの宣言 戻り値無、引数無delegate void MyDelegate(); // ())
class MyClass {

インスタンスメソッド public void show() { //
呼ばれました Console.WriteLine(" ");

 }
}
class delegate02 {
 public static void Main() {

インスタンスを生成 MyClass mc = new MyClass(); //
インスタンスで直接呼出す mc.show(); //

デリゲートを生成 MyDelegate m = new MyDelegate(mc.show); //
デリゲート経由で呼出す インスタンス名は不要 m(); // ()

 }
}

テキスト編次回予告： 「別のクラスにある静的メソッドをデリゲート経由で呼び出す」からp.298

ゲーム開発演習：背景画面のスクロール、アイテムの同時スクロール、左右移動 など

テーマ 背景画面のスクロール（再掲載＆変更）25

・ の座標系では画面に表示されない範囲外の座標を指定しても良いGDI+
・そのため、画像や図形の描画開始位置を範囲外にして、範囲内にある部分のみを表示してOK
・この仕組みを活用して背景画面のスクロールをすることができる
・以下は縦スクロールの場合だが、横スクロールも同様。
・背景画像を 枚用意し、 枚目の描画開始位置を画面左上 から順次下に変更していく2 1 (0,0)
・すると、 枚目が見かけ下に移動して、上が開くので、そこに 枚目を描画すればよい1 2
・そして完全に下がり切ったら、元の に戻せば良い(0,0)

演習 背景画面のスクロール21

・背景画像 を縦に下方向へスクロールするようにしようbacki
・背景画像 は上下がつながるデザインなので 枚の画像を つ並べて表示すると良いbacki 1 2
・ 枚目の描画開始 座標を保持する変数を で初期化し、タイマーで 画面分までインクリメントすれ1 Y 0 1
ば良い
・そして、画像の高さ分まで進んだら に戻せばよい 画像の高さで割った余りにする0 ()
・タイマーのインターバルを ミリ秒にしよう10
・併せて、同心円と矩形は削除し、スコアの加算を中止しよう

作成例

演習 背景画面のスクロール// 21
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
スコア int score = 0; //

背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //
アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //

赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2
透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //

赤いブラシ
メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
タイマーの生成 Timer timer = new Timer(); //

【追加】 枚目の背景描画開始 座標 int backy = 0; // 1 Y
描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //

イド
基本クラスの描画処理を呼ぶ base.OnPaint(e); //

【変更】背景画像を描画 e.Graphics.DrawImage(backi, 0, backy); //
【追加】背 e.Graphics.DrawImage(backi, 0, backy - backi.Height); //

景画像を描画
スタート画面？ if (gamemode == 0) { //

タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //
イトル表示

 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,
メッセージ表示300); //

プレイ画面？ } else if (gamemode == 1) { //
スコア string s = String.Format("SCORE:{0:000,000}", score); //

文字列を作る
スコア表示 e.Graphics.DrawString(s, font1, brushs, 400, 10); //

中心座標を得 int x = backi.Width / 2, y = backi.Height / 2; //
る
 e.Graphics.DrawImage(numx, x - numx.Width / 2, y -

アイテム画像を描画numx.Height / 2); //
【削 //e.Graphics.FillRectangle(brush1, 78, 411, 485, 64); //

除】矩形を塗りつぶす
【削除】 //e.Graphics.DrawRectangle(pen1, 78, 411, 485, 64); //

矩形を描く
【削除】ペンを黄色にする //pen1.Color = Color.Yellow; //

【削除】ペン太さを にする //pen1.Width = 10; // 10
【削除】 回繰返す //for (int i = 1; i <= 4; i++) { // 4

 // e.Graphics.DrawEllipse(pen1, x - 15 * i, y - 15 * i, 30
【削除】円を描く* i, 30 * i); //

 //}
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
タイマー開始 timer.Start(); //

 }
画面再描画を依頼 Invalidate(); //

 }
タイマーイベント処理 void Play(object o, EventArgs e) { //

【削除】スコアカウントアップ //score++; //
【追加】 枚目の背景描画開始 座 backy = (backy + 1) % backi.Height; // 1 Y

標を下げる
画面再描画を依頼 Invalidate(); //

 }
コンストラクタ Program() { //

ダブルバッファリングを有効化 DoubleBuffered = true; //
キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //

タイマーイベント登録 timer.Tick += new EventHandler(Play); //
【変更】タイマーインターバル ミリ秒 timer.Interval = 10; // ()

 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //

コントロールボックスを非表示に f.ControlBox = false; //
サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //

フォームを現出 Application.Run(f); //
 }
}

テーマ アイテムの同時スクロール26

・背景画像の上においたアイテム画像を背景と同速で動かせば同時スクロールが可能
・ただし、画面外へのはみだしや、画面上部からの再出現が必要であれば、別途管理すること

演習 アイテムの同時スクロール22

・アイテム を背景と同速で縦に下方向へスクロールするようにしようnumx
・完全に画面外に出たら描画とスクロールは中止しよう

作成例

演習 アイテムの同時スクロール// 22
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
スコア int score = 0; //

背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //
アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //

赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2
透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //

赤いブラシ
メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
タイマーの生成 Timer timer = new Timer(); //

枚目の背景描画開始 座標 int backy = 0; //1 Y
【追加】アイテムの描画 座標の増分 int numxy = 0; // Y

描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //
イド

基本クラスの描画処理を呼ぶ base.OnPaint(e); //
背景画像を描画 e.Graphics.DrawImage(backi, 0, backy); //

背景画像を e.Graphics.DrawImage(backi, 0, backy - backi.Height); //
描画

スタート画面？ if (gamemode == 0) { //
タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //

イトル表示
 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,

メッセージ表示300); //
プレイ画面？ } else if (gamemode == 1) { //

スコア string s = String.Format("SCORE:{0:000,000}", score); //
文字列を作る

スコア表示 e.Graphics.DrawString(s, font1, brushs, 400, 10); //
【変更】 int x = backi.Width / 2 - numx.Width / 2; //

【変更】 int y = backi.Height / 2 - numx.Height / 2 + numxy; //
中心座標を得る

【追加】画面内なら if (y < backi.Height) { //
【変更】アイテム画像を描画 e.Graphics.DrawImage(numx, x, y); //

 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
タイマー開始 timer.Start(); //

 }
画面再描画を依頼 Invalidate(); //

 }
タイマーイベント処理 void Play(object o, EventArgs e) { //

枚目の背景描画開始 座標を下 backy = (backy + 1) % backi.Height; //1 Y
げる

【以下追加】背景高さ if (numxy - numx.Height < backi.Height / 2) { //
の半分まで

アイテムの描画 座標の増分加算 numxy++; // Y
 }

画面再描画を依頼 Invalidate(); //
 }

コンストラクタ Program() { //
ダブルバッファリングを有効化 DoubleBuffered = true; //

キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //
タイマーイベント登録 timer.Tick += new EventHandler(Play); //

【変更】タイマーインターバル ミリ秒 timer.Interval = 10; // ()
 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //
フォームのサイズを設定 f.Size = new Size(660, 520); //

フォーム名を設定 f.Text = "Game"; //
コントロールボックスを非表示に f.ControlBox = false; //

サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //
フォームを現出 Application.Run(f); //

 }
}

テーマ キーボードの状態を得る27

・キー入力イベントを用いる手法は「キーを押している間、〇〇する」には向かない
・代わりにタイマーイベントを用いてキーボードの状態を得る処理を呼び出してもらうと良い
・これを実現するには、 を提供する （動的リンクライブラリ）の一つであるWindowsAPI DLL
「 」を直接インポートするuser32.dll
・インポートの書式： [System.Runtime.InteropServices.DllImport("user32.dll")]
※セミコロン不要
・すると、これに含まれる メソッドを外部定義指定により利用可能になるGetKeyState
・外部定義指定の書式： private static extern short GetKeyState(int
nVirtKey);
・これで メソッドに引数として 列挙子を 型にキャストして与えると、そのキーが押GetKeyState Key int
されていれば負の数が返される
・インポートと外部定義指定はクラス定義の先頭で行うこと

演習 上矢印キーが押されていたらスコアアップ23

・上矢印キーの 列挙子はKey Keys.Up
・これを用いて、 メソッド内で、上矢印キーが押されているかチェックし、押されていたらスコアをインPlay
クリメントしよう

作成例

演習 上矢印キーが押されていたらスコアアップ// 23
汎用的に利用using System; //

フォームアプリケーションに必須using System.Windows.Forms; //
、 用using System.Drawing; //Size Image
クラスの派生クラスclass Program : Form { //Form

【追加】 イ [System.Runtime.InteropServices.DllImport("user32.dll")] // DLL
ンポート

【追加】外部定 private static extern short GetKeyState(int nVirtKey); //
義指定

モード タイトル画面 プレイ画面 終了画面 int gamemode = 0; // (0: ,1: ,9:)
スコア int score = 0; //

背景画像を読込む Image backi = Image.FromFile("backb.bmp"); //
アイテム画像を読込む Image numx = Image.FromFile("numx.bmp"); //

赤色太さ のペン Pen pen1 = new Pen(Color.Red, 2); // 2
透明 Brush brush1 = new SolidBrush(Color.FromArgb(63, 255, 0, 0)); //

赤いブラシ
メイリオ フォントを生成 Font font1 = new Font(" ", 20, FontStyle.Bold); //
メイリオ フォントを生成 Font fontt = new Font(" ", 80, FontStyle.Bold); //
メイリオ フォントを生成 Font fontm = new Font(" ", 25, FontStyle.Bold); //

黄色のブラシ Brush brushs = new SolidBrush(Color.Yellow); //
タイマーの生成 Timer timer = new Timer(); //

枚目の背景描画開始 座標 int backy = 0; //1 Y
アイテムの描画 座標の増分 int numxy = 0; // Y

描画処理のオーバラ protected override void OnPaint(PaintEventArgs e) { //
イド

基本クラスの描画処理を呼ぶ base.OnPaint(e); //
背景画像を描画 e.Graphics.DrawImage(backi, 0, backy); //

背景画像を e.Graphics.DrawImage(backi, 0, backy - backi.Height); //

描画
スタート画面？ if (gamemode == 0) { //

タ e.Graphics.DrawString("GAME1", fontt, brushs, 100, 150); //
イトル表示
 e.Graphics.DrawString("Hit Enter Key", fontm, brushs, 200,

メッセージ表示300); //
プレイ画面？ } else if (gamemode == 1) { //

スコア string s = String.Format("SCORE:{0:000,000}", score); //
文字列を作る

スコア表示 e.Graphics.DrawString(s, font1, brushs, 400, 10); //
 int x = backi.Width / 2 - numx.Width / 2;

中心座 int y = backi.Height / 2 - numx.Height / 2 + numxy; //
標を得る

画面内なら if (y < backi.Height) { //
アイテム画像を描画 e.Graphics.DrawImage(numx, x, y); //

 }
 }
 }

キー入力時処理 void OnKeyDown(object o, KeyEventArgs e) { //
キーが押されていたら if (e.KeyCode.ToString() == "Escape") { //Esc

フォーム終了 Close(); //
 }

タイトル画面で キーが押されていたら // Enter
 if (gamemode == 0 && e.KeyCode.ToString() == "Return") {

プレイ動画に遷移 gamemode = 1; //
タイマー開始 timer.Start(); //

 }
画面再描画を依頼 Invalidate(); //

 }
タイマーイベント処理 void Play(object o, EventArgs e) { //

枚目の背景描画開始 座標を下 backy = (backy + 1) % backi.Height; //1 Y
げる

背景高さの半分まで if (numxy - numx.Height < backi.Height / 2) { //
アイテムの描画 座標の増分加算 numxy++; // Y

 }
【以下追加】 キーが押されてい if (GetKeyState((int)Keys.Up) < 0) { // ↑

る？
スコアアップ score++; //

 }
画面再描画を依頼 Invalidate(); //

 }
コンストラクタ Program() { //

ダブルバッファリングを有効化 DoubleBuffered = true; //
キー入力イベント登録 KeyDown += new KeyEventHandler(OnKeyDown); //

タイマーイベント登録 timer.Tick += new EventHandler(Play); //
タイマーインターバル ミリ秒 timer.Interval = 10; // ()

 }
 public static void Main() {

自分のオブジェクトを生成 Program f = new Program(); //

フォームのサイズを設定 f.Size = new Size(660, 520); //
フォーム名を設定 f.Text = "Game"; //

コントロールボックスを非表示に f.ControlBox = false; //
サイズ変更を抑止 f.FormBorderStyle = FormBorderStyle.Fixed3D; //

フォームを現出 Application.Run(f); //
 }
}

提出：演習 上矢印キーが押されていたらスコアアップ23

ゲーム開発演習次回予告：自機の左右移動、自機の画像変更、自弾の発射など

